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Abstract
Peak calling is a critical step inChIPseq data analysis. Choosing the correct algorithm aswell
as optimized parameters for a specific biological system is an essential task. In this article, we
present an original peak-callingmethod (bPeaks) specifically designed to detect transcription
factor (TF) binding sites in small eukaryotic genomes, such as in yeasts. As TF interactions
with DNA are strong and generate high binding signals, bPeaks uses simple parameters to
compare the sequences (reads) obtained from the immunoprecipitation (IP) with those from
the control DNA (input). Because yeasts have small genomes (<20Mb), our programhas the
advantage of using ChIPseq information at the single nucleotide level and can explore, in a
reasonable computational time, results obtained with different sets of parameter values.
Graphical outputs and text files are provided to rapidly assess the relevance of the detected
peaks. Taking advantage of the simple promoter structure in yeasts, additional functions
were implemented in bPeaks to automatically assign the peaks to promoter regions and re-
trieve peak coordinates on the DNA sequence for further predictions of regulatory motifs,
enriched in the list of peaks. Applications of the bPeaks program to three different ChIPseq
datasets from Saccharomyces cerevisiae, Candida albicans and Candida glabrata are pre-
sented. Each time, bPeaks allowed us to correctly predict the DNA binding sequence of the
studied TF and provided relevant lists of peaks. The bioinformatics tool bPeaks is freely dis-
tributed to academic users. Supplementary data, together with detailed tutorials, are avail-
able online: http://bpeaks.gene-networks.net. Copyright © 2014 John Wiley & Sons, Ltd.
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Introduction

Transcriptional regulations are mediated by DNA-
binding of transcription factors (TFs) that recog-
nize specific DNA elements which, in yeasts, are
located upstream of their regulated genes (target
genes). Identification of transcription factor bind-
ing sites is an important preliminary to: (a) discov-
ering DNA-regulatory motifs, which are recognized

by a particular transcription factor; and (b) identify-
ing potential target genes of this factor, which is the
first step to building genome-wide transcriptional
regulatory networks (Harbison et al., 2004). Chroma-
tin immunoprecipitation (ChIP), followed by high-
throughput sequencing (ChIPseq), is a powerful
technique for the genome-wide detection of protein–
DNA-binding sites (Johnson et al., 2007). The ChIP
experimental procedure consists in treating living
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cells with a crosslinking agent that attaches proteins
to their DNA substrates. After DNA extraction and
fragmentation, DNA sequences associated with a par-
ticular protein of interest are isolated using a specific
antibody against the protein (for review of ChIP-
based methods, see Kim and Ren, 2006). In ChIPseq
experiments, the DNA fragments of interest are di-
rectly sequenced using high-throughput sequencing
technologies. Compared to ChIP on chip – the micro-
array based technology – ChIPseq offers higher reso-
lution, greater sequence coverage and increased
signal:noise ratio (Park, 2009). Applied to the detec-
tion of transcription factor binding to genomic
DNA, ChIPseq allows the determination of two to
four times more binding sites than previous methods
(Robertson et al., 2007).
Still it is important to consider several technical

aspects to obtain high-quality ChIPseq data
(Kidder et al., 2011). This includes the quality of
antibodies, the mandatory use of controls, the
quality of the DNA library construction, the se-
quencing procedure and, finally, the bioinformatics
and statistical analyses applied to the experimental
results. It is critical to use relevant computational
methods for processing sequencing data and thus
ensuring the inference of biologically meaningful
information (Diaz et al., 2012). The classic
workflow for ChIPseq analysis can be divided into
three main steps: (a) quality controls and filtering
of low quality sequences; (b) mapping of the
remaining sequences (or reads) to the reference
genome; and (c) peak finding (or ‘peak calling’)
to detect protein–DNA interactions over the whole
genome (for more details, see the reviews of Kim
and Ren, 2006; Pepke et al., 2009; Kidder et al.,
2011; Bailey et al., 2013). Peak calling is clearly
the most challenging part of ChIPseq data analysis.
It consists in using a computational procedure to
identify genomic regions with a significant
enrichment of reads in ChIP sample relative to
background noise. To correctly estimate enrich-
ments, it is necessary to use a control sample in
which, for instance, genomic DNA was sequenced
without antibody enrichment (total INPUT) (Liang
and Keles, 2012). In control samples, distributions
of reads are far from being uniform (Rozowsky
et al., 2009) and hence regions with high read
counts do not necessarily represent DNA-binding
sites for proteins. The main challenge of peak
calling is to distinguish real binding events from
intrinsic variability in the sequencing depth.

In the last few years, a burst of peak-calling
methods has been developed. More than 30 analyt-
ical programs are currently available (for method
reviews and comparisons, see e.g. Fejes et al.,
2008; Kharchenko et al., 2008; Rozowsky et al.,
2009; Xu et al., 2010; Cheng et al., 2011; Boeva
et al., 2012; Wang et al., 2013; Wilbanks and
Facciotti, 2010; Malone et al., 2011; Bailey et al.,
2013). Importantly, the method and its parameter
values should be chosen to correctly fit the charac-
teristics of the genomic regions to be identified,
which depend on the type of immunoprecipitated
protein and of the protocol used (Pepke et al.,
2009). Proteins such as RNA polymerases, general
transcription factors or histones, generally bind to
DNA in broad regions, yielding to numerous and
relatively large peaks with low read density (Wang
et al., 2013). In the case of specific transcription
factors, the ChIPseq signals are expected to be
sharper and specific to short DNA sequences located
upstream of the transcriptional start site of a rela-
tively limited number of genes (Robertson et al.,
2007). Also, handling ChIPseq data for species with
large genome sizes (e.g. human, mouse) addresses
very different challenges compared to species with
small genome sizes, such as yeasts (<20Mb).
Sequencing depth is the major concern for people
who perform deep sequencing analyses in organ-
isms with large genomes (Landt et al., 2012). This
explains constant improvements in sequencers to
obtain more and more reads in a single run. Dealing
with this immense quantity of sequence data (hun-
dreds of millions of reads) requires computational
skills and suitable hardware resources (Nagasaki
et al., 2013). For species with small genome sizes,
the situation is very different. Bioinformatics simu-
lations based on the yeast genome estimated that
only 260 000 unique mapped reads are enough to
saturate the binding sites of a particular TF (with a
five-fold enrichment) (Lefrancois et al., 2009),
whereas 12 million mapped reads are typically used
with the human genome (Rozowsky et al., 2009).
Working with a reasonable number of reads in

genomes with an average complexity represents an
important computational advantage. Peak calling can
be performed in a fewminwith a desktopworkstation,
allowing for iterative procedures and more systematic
analyses of the data. In that respect, we developed a
simple and robust bioinformatics tool called bPeaks
(‘basic Peaks’) for the detection of TF binding sites
from ChIPseq data in small eukaryotic genomes. The
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program bPeaks performs a high-resolution analysis
(at the nucleotide scale) of ChIPseq results. It uses a
sliding window that scans every position of a genome
and compares the read number obtained from the im-
munoprecipitation (IP) sample with those obtained
from a control sample. To define a genomic region
as a ‘peak’, four criteria have to be satisfied: (a) a high
number of reads in the IP sample (criterion 1 or C1);
(b) a low number of reads in the control sample (C2);
(c) a high value of log fold change (or logFC) between
numbers of reads in IP and control samples (C3); and
(d) a good sequencing coverage in both IP and control
samples (C4). Peaks are therefore defined as the
genomic regions reaching four threshold values
(T1, T2, T3 and T4) corresponding to each of the four
criteria mentioned above. After the peak calling,
bPeaks generates output files and graphics to help
users to choose combinations of threshold values
and to define lists of relevant peaks for further anal-
yses. In this paper, we explain the bPeaks program
and present several applications to ChIPseq data
obtained in yeasts Saccharomyces cerevisiae,
Candida albicans and Candida glabrata.

Methods

Performing a peak calling analysis with bPeaks

The program bPeaks compares IP and control
signals (Figure 1A), i.e. numbers of mapped reads
obtained from the IP and the control samples. It uses
overlapping sliding windows to scan the genome
(Figure 1A). A combination of four thresholds is
applied to identify positive windows, i.e. genomic
regions with: (a) a high number of reads in the IP
sample (threshold T1); (b) a low number of reads
in the control sample (threshold T2); (c) a high value
of logFC between IP and control (threshold T3); and
(d) a good sequencing coverage (IP and control sam-
ples, threshold T4) (Figure 1B). The program bPeaks
is written in R programming language. It is freely
available from the CRAN website (http://cran.r-pro-
ject.org/web/packages/bPeaks). Tutorials are also
available online (http://bpeaks.gene-networks.net).

Parameter calculations

Global parameters (GIP and GControl) are calculated
to quantify the sequencing coverage in IP and
control samples, as follows:

GIP ¼ 1
n

Xn
i¼1

xIPi (1)

and

GControl ¼ 1
n

Xn
i¼1

xControli (2)

where xIPi and xControli , respectively, denote the
number of sequences mapped at position i
of the reference genome in IP and control
samples, and n the total number of nucleotides
in the genome.
Local parameters (C1,w, C2,w, C3,w and C4,w) in

the sliding windows are also calculated. For each
window (w), we have:

C1;w ¼ 1
nw

Xnw
i¼1

xIPi;w (3)

C2;w ¼ 1
nw

Xnw
i¼1

xControli;w (4)

C3;w ¼ 1
nw

Xnw
i¼1

log
xIPi;w

xControli;w

� �
(5)

C4;w ¼ 1
nw

Xnw
i¼1

log xIPi;w

� �þ log xControli;w
� �

2
(6)

where nw denotes the number of nucleotides that
belong to window w. These parameters quantify
important properties regarding peak detection:
local IP signal (Ci,w), local control signal (C2,w),
logFC between IP and control signals (C3,w) and
density of reads (C4,w).

Peak detection

Genomic regions are identified combining global
and local parameters, with four thresholds
denoted T1, T2, T3 and T4. Positive windows are
selected if: C1,w≥ T1 ×GIP, C2,w≤ T2 ×GControl,
C3,w≥ T3 andC4,w≥Quantile(C4, T4) (Figure 1B).
Typically, T1 and T2 values lie between 1 and 6,
as they represent multiplicative values associated
with the sequencing coverage in IP and control
samples; T3 lies around 2 or 3, as it represents a
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Figure 1. General principle of the bPeaks method. (A) The bPeaks program uses a sliding windows to scan the entire
genomic sequence. For each window, the program calculates local IP and control values (see Methods). Positive windows
exhibit a high value in IP signal, a low value in control signal, a high value of logFC between IP and control signals and a
sequencing coverage high enough to ensure good confidence in IP and control signals. (B) Graphical representations of local
parameters calculated with bPeaks on chromosome 15 of yeast S. cerevisiae, analysing Pdr1p ChIPseq data (see Results). To
apply bPeaks, the user specifies values for the four thresholds (T1, T2, T3 and T4). Positive windows exhibit IP signal > T1,
control signal < T2, logFC > T3 and density of reads > T4. Results associated with parameter sets 1 and 2 (see Table 1)
are shown here. Note that difference between the two sets of parameters only relies on T3 (lower in parameter set 2 than
in parameter set 1; see orange arrow). Decreasing T3 allows the selection of additional windows (surrounded by orange
broken line). This explains why S1 results are necessarily included in S3 results (Figure 3A)
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logFC (base 2); and T4 lies between 0 and 1, as it
is a threshold associated with the cumulative dis-
tribution function of C4,w values on each
chromosome. Successive positive windows are
merged to define larger genomic regions,
referred to as ‘basic peaks’ (bPeaks).

Input and output data files

An overview of bPeaks input and output files is
shown Figure 2. Sequencing results should be first
converted to data files, with the number of
sequences mapped on each nucleotide in the
reference genome (Figure 2A). This can be
performed with other bioinformatics programs,
such as BEDTOOLS (Quinlan and Hall, 2010).
After parameter selection and peak detection

(Figure 2B), bPeaks generates several output files,
PDF files for graphics and BED files for peak
locations (Figure 2C). These files can be used for
further investigations with, for instance, extraction
of DNA sequences of peaks (FASTA file),
detection of regulatory motifs or calculation of
the proportion of peaks in promoters (Figure 2D).

Assigning detected peaks to genes with bPeaks

Annotations of gene positions for 10 different yeast
species are directly available in the bPeaks tool:
Saccharomyces cerevisiae, Candida albicans,
Candida glabrata, Debaryomyces hansenii,
Eremothecium gossypii, Kluyveromyces lactis,
Pichia sorbitophila, Saccharomyces kluyveri,
Yarrowia lipolytica and Zygosaccharomyces rouxii.

Figure 2. Overview of the bPeaks protocol used to analyse ChIPseq data. (A) Input files for bPeaks program (see
Methods). The sequencing results should be converted to data files with the number of sequences mapped on each
nucleotide in the reference genome. (B) Use of the bPeaks program requires the selection of values for thresholds
T1, T2, T3 and T4. A procedure was implemented in the bPeaks program to automatically test several combination
of parameters (see Table 1 for an example on the Pdr1p dataset). Supplementary parameter combinations can be
chosen to explore the bPeaks parameter space more deeply. (C) Output files provided by the bPeaks program. These
files allow the biological relevance of the genomic regions identified with bPeaks to be assessed. The user can either
modify bPeaks parameters to increase the peak calling stringency of sensitivity (see Table 1) or use other tools to
deeply analyse the identified genomic regions. (D) Illustration of further analyses that can be performed to assess
the relevance of the detected peaks. Peak assignment to promoters is a functionality that is available in bPeaks tools
for 10 yeast species (see Methods)
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This allows bPeaks to automatically calculate the
proportion of peaks in promoter regions of genes
(default value is 800 bp before start codon ATG).
Annotations were collected from the Saccharomy-
ces Genome Database (SGD) (Cherry et al., 2012),
the Candida Genome Database (Inglis et al., 2012)
and the Genolevures database (Sherman et al.,
2009). For other organisms, the user can specify
the boundaries of any genomic element (gene, pro-
moter, non-coding elements, etc.) and use bPeaks
to identify peaks that fall in each category.

Analyses of ChIPseq data in this study

Transcription factor Pdr1p in S. cerevisiae

A S. cerevisiae myc-tagged PDR1 strain (Fardeau
et al., 2007) was used to perform chromatin immuno-
precipitation (ChIP). Overnight culture was harvested
at OD 0.6–0.8 and fixed with 1% formaldehyde for
15min at room temperature with casual agitation.
The crosslinking was stopped by adding glycine to
a final concentration of 340mM and incubating for
5min at room temperature. Cells were disrupted
using a FastPrep®-24 instrument (MP Biomedial).
Cell extracts were sonicated using a Bioruptor®

standard sonication device (Diagenode), leading to
DNA fragments of around 300bp. Cell debris was
then eliminated by centrifugation. A portion corre-
sponding to 1% of total soluble fraction was retained
for further DNA extraction (control sample or
INPUT). The remaining fraction was used to immu-
noprecipitate the myc-tagged Pdr1p protein with
anti-c-myc antibody (Roche Applied Science) bound
to Dynabeads® magnetic beads (Invitrogen). After
overnight incubation with gentle shaking at 4 °C,
the IP complexes were washed and eluted from the
beads by heating the samples for 20min at 65 °C
with shaking at 1200 rpm in elution buffer contain-
ing 0.5% SDS. The crosslinking of the IP
(immunoprecipitated chromatin) and INPUT
(whole chromatin) was then reversed by heating
the samples at 65 °C overnight. Reversed
chromatin was then digested with proteinase K
(Roche Applied Science) at 37 °C for 2 h. DNA was
extracted using a standard phenol/chloroform extrac-
tion protocol, treated with RNAse (Fermentas) to
totally eliminate any residual RNA, and purified
using QIAquick® PCR Purification Kit (Qiagen).

The collected DNA samples were used to construct
libraries using the NEXTflex ChIPseq Kit (Illumina),
following the supplier’s instructions. Sequencing was
performed using a HiSeq sequencing instrument
(Illumina technology available at the transcriptome
platform at the Ecole Normale Supérieure: http://
www.transcriptome.ens.fr/sgdb/, Paris, France).
After quality controls and filtering of low quality
bases, around 30 million sequences (IP sample) and
88 million sequences (control sample) were mapped
on the S. cerevisiae genome, using the bowtie
algorithm (Langmead et al., 2009). Output files
(SAM format) were converted into BAM files and
indexed using the SAMTOOLS suite (Li et al.,
2009). Numbers of sequences mapped on each nucle-
otide in the reference genome were finally calculated
using the ‘genomeCoverageBed’ tool, available from
the BEDTOOLS suite (Quinlan and Hall, 2010) and
stored in two data files (one for the IP sample and
one for the control sample). These files can be
downloaded from the bPeaks website (http://bpeaks.
gene-networks.net). Note that all sequencing data
(Pdr1p, Sfl1p and CgAp1p) used in this article are
‘single read’ datasets.

Transcription factor Sfl1p in C. albicans

FASTQ files were collected from the SRA
database (http://www.ncbi.nlm.nih.gov/sra) under
Accession No. SRP017529. Between 14 and 22
million reads were available for each sample. Read
mappings and file conversions for peak calling
with the bPeaks program were performed as
described for Pdr1p ChIPseq data.

Transcription factor CgAp1p in Candida glabrata

The same ChIP protocol described above for Pdr1p
was applied to immunoprecipitate C. glabrata
CgAP1 myc-tagged protein after 10min of expo-
sure to 1mM selenite (stress condition) and in opti-
mal growth conditions (non-stress condition).
After library constructions and the sequencing proce-
dure, 22 million reads (IP sample, stress condition),
21 million reads (IP sample, non-stress condition)
and 23 million reads (associated INPUT controls)
were analysed using the same procedure as described
for Pdr1p ChIPseq data.

380 J. Merhej et al.

Copyright © 2014 John Wiley & Sons, Ltd. Yeast 2014; 31: 375–391.
DOI: 10.1002/yea

http://www.ncbi.nlm.nih.gov/sra


Running bPeaks

To apply the bPeaks program (Pdr1p ChIPseq
data), the following R code can be used:

library(bPeaks)
## get CDS annotations for yeasts
data(yeastCDS)
## read the sequencing result files
pdr1Data = dataReading(‘IPdata.txt’, ‘controlData.
txt’, yeastSpecies = yeastCDS$Saccharomyces.
cerevisiae)
## bPeaks analyses with different parameter
associations
bPeaksAnalysis(IPdata = pdr1Data$IPdata,
controlData = pdr1Data$controlData,
IPcoeff = c(6, 4, 2), controlCoeff = c(2, 4, 6),
log2FC = c(3, 2), averageQuartile = c(0.9, 0.7) )

As an illustration here, values 6, 4 and 2 for
‘IPcoeff’ (threshold T1); 2, 4 and 6 for ‘controlCoeff’
(threshold T2); 3 and 2 for ‘log2FC’ (threshold T3);
and 0.9 and 0.7 for ‘averageQuartile’ (threshold T4)
were combined to perform peak calling with different
parameter associations (3×3×2×2=36 combina-
tions), from the most stringent combination (T1 = 6,
T2 = 2, T3 = 3 and T4 = 0.9) to the less stringent one
(T1 = 2, T2 = 6, T3 = 2 and T4 = 0.7). The parameter
associations and the compositions of the detected
lists of peaks are discussed in Results. Note that
the user can easily specify additional parameter
associations in order to explore the parameter
space more deeply.

Retrieving DNA sequences of peaks and searching
for regulatory motifs

Starting from the genomic locations of the peaks de-
tected with bPeaks (BED files), DNA sequences of
interesting peaks were retrieved using the ‘getfasta’
function from the BEDTOOLS suite (Quinlan and
Hall, 2010). These genomic sequences were used
as inputs for the ‘peak-motif’ tool (http://rsat.ulb.
ac.be/) to search for regulatory motifs (Thomas-
Chollier et al., 2012).

Technical information

Memory requirements to use bPeaks, in terms of
computational resources, are proportional to the size
of the genome and the sequencing coverage

(number of reads). As an illustration, analysis of
Pdr1p ChIPseq data lasts around 5min (one set of
parameters) using the HP Z820 Workstation [Intel
Xeon E5-2609 2.4 Ghz CPU and 16GB DDR3-
1600 (8× 2GB) RAM].

Results

A case study of the Pdr1p transcription factor in
Saccharomyces cerevisiae

To assess the relevance of bPeaks, we performed
ChIPseq experiments (IP and control samples) of
the transcription factor (TF) Pdr1p, in the model
yeast S. cerevisiae (see Methods). Pdr1p belongs
to the GAL4 family of yeast TFs, characterized
by the Zn2Cys6 DNA-binding motif (Schjerling
and Holmberg, 1996). It plays a central role in
the regulation of pleiotropic drug resistance
through transcriptional controls of about 30 genes
(Kolaczkowska and Goffeau, 1999; DeRisi et al.,
2000; Fardeau et al., 2007). Pdr1p was chosen to
benchmark the bPeaks program for three main
reasons. First, Pdr1p is a promoter-resident regula-
tor, which, in contrast to other stress-responsive
TFs, does not need a particular environmental
stimulation to bind DNA (Fardeau et al., 2007).
This property greatly simplified our ChIPseq
analyses, as no particular treatment was required to
observe Pdr1p binding to its target genes. Second,
the DNA consensus sequence recognized by
Pdr1p, called the pleiotropic drug-response element
(PDRE; 5′-TCCGCGGA-3′), has been character-
ized without ambiguity (Mamnun et al., 2002).
Third, several groups have studied the genome-wide
binding patterns of Pdr1p using ChIP on chip tech-
nology (DeRisi et al., 2000; Devaux et al., 2001;
Fardeau et al., 2007). The set of genes regulated
by Pdr1p has thus been extensively described in
the literature (DeRisi et al., 2000; Devaux et al.,
2001; Fardeau et al., 2007).

Influence of parameter values on bPeaks results

Parameter choice represents a key step in using ev-
ery peak-calling program. In bPeaks, the detection
of peaks relies on four thresholds, T1, T2, T3 and T4
(see Methods). To evaluate the influence of param-
eter values on final results, we applied bPeaks with

381bPeaks: basic peak detection from ChIPseq data

Copyright © 2014 John Wiley & Sons, Ltd. Yeast 2014; 31: 375–391.
DOI: 10.1002/yea

http://rsat.ulb.ac.be/
http://rsat.ulb.ac.be/


36 different combinations of thresholds associated
to different levels of peak calling specificity and
sensitivity (see R code, Methods). Table 1 summa-
rizes critical properties regarding the detected
peaks. Combinations of thresholds were ordered
according to the average IP signals (average C1),
from the highest to the lowest. The first and last
rows in Table 1, respectively, show the most strin-
gent parameter associations (highest values for T1,
T3, T4 and lowest values for T2) and the least strin-
gent ones (lowest values for T1, T3, T4 and highest
values for T2). The number of peaks identified by
the different sets of parameters varies from 24 for
the most stringent to 628 for the least. Several
combinations of parameters led to the same lists
of peaks, with only small variations in the size of
the regions detected, and which slightly changed
the average C1, C2, C3 and C4 values of the lists
(Table 1). This allowed us to differentiate the
impact of each criterion on the final lists of
selected peaks. An association between numbers
of detected peaks and the values of T3 and T4
was clearly observed, indicating that these two
parameters have, in this case, an essential influence
on the stringency of the list. In contrast, T1 and T2
have influence which is relevant only when T3 and
T4 are both relatively low (see the two last lists of
peaks, 611 and 628 peaks, Table 1).
Figure 3A presents a comparison of the overlaps

between lists of peaks associated with four differ-
ent parameter sets, referred to as S1 (24 peaks),
S2 (122 peaks), S3 (121 peaks) and S4 (336 peaks)
(Table 1). S1 results were obtained using the most
stringent combinations of parameters. They were
therefore included in all other lists. In contrast,
the S2 and S3 lists, although containing a similar
number of peaks (122 and 121, respectively), had
a partial overlap of< 50% (47 peaks; Figure 3A).
This corresponds to the opposite changes of the
thresholds T3 and T4 between the two lists. Peaks
selected in S2 have lower logFC values than peaks
detected in S3 (TS2

3 < TS3
3 ) but a higher density of

reads (TS2
4 > TS3

4 ). Finally, the results of S1, S2
and S3 are all included in the S4 list, which has
the lowest combinations of T3 and T4 values
(2 and 0.7, respectively). This is coherent with
the idea that T3 and T4 are important parameters
that account for the composition of the lists of
outstanding peaks. Finally, it is important to
note that the parameter values have very little

influence on the sizes of the detected peaks,
which were around 180 base pairs for all combi-
nations of parameters (Table 1).

Assessment of the biological significance of bPeaks lists

Once lists of peaks are generated, bPeaks provides
output files that can be used to assess their biological
significance (see Methods). For instance, the user
can analyse the DNA sequences of peaks to predict
the DNA consensus motifs recognized by the
studied TF or analyse the proportion of peaks lo-
cated in promoter sequences of genes (Figure 2D).
This information can help the user to evaluate the
specificity and sensitivity of their peak calling
analyses. As an illustration, results obtained for the
Pdr1p data are detailed below.

De novo cis-regulatory motif discovery

One of the important outcomes that biologists
expect from ChIPseq data is the identification of
the DNA binding preferences of a transcription
factor. To reach this goal in the case of Pdr1p, the
sequences of the peaks found in the S1, S2, S3 and
S4 lists were analysed with ‘peak-motifs’ web tool
(Thomas-Chollier et al., 2012) (see Methods).
DNA motifs enriched in each list were predicted
using the default parameters; the results are
presented in Supplementary data S1 (see supporting
information) and Figure 4. With the S1 list, all
detected motifs agreed with the Pdr1p-binding
site, 5′-TCCGCGGA-3′ (PDRE) described in the
literature. PDRE was present in eight (33%) of
the peaks in the S1 list (Figure 4). Motifs detected
respectively in the S2 and S3 (see supporting
information) lists also agreed with the PDRE list
(see supporting information, Supplementary data
S1). Interestingly, the number of peaks with the
PDRE motif was, this time, higher (16 peaks for
the S2 list and 13 peaks for the S3 list) but the
proportion of these peaks was lower (13% for the
S2 list and 11% for the S3 list; Figure 4). In
the larger S4 list, we observed that the PDRE
was found among other unrelated motifs to Pdr1p
(see supporting information, Supplementary data
S1) and the global proportion of PDRE containing
peaks was very low (17 peaks corresponding to
5% of the total number of predicted peaks;
Figure 4). Decreasing the stringency of the
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Figure 3. Comparison of lists of peaks detected using different parameter associations in bPeaks. (A) Four sets of parameters (S1,
S2, S3 and S4) were selected for peak list comparison (see Table 1); overlaps between the detected peaks are shown here. Peaks
detected with S1 parameters are included in peaks detected with S2 and S3 parameters, peaks detected with S2 and S3 overlap
and are all included in peaks detected with S4 parameters. (B) Evolution of the proportion of peaks in promoters according to
the number of detected peaks. The proportion of peaks in promoters decreases when the number of detected peaks increases;
the proportions of peaks in promoters were calculated using the ‘Peak-to-gene assignments’ function in bPeaks (see Methods)

Figure 4. De novo cis-regulatory motif discovery. DNA sequences associated with the genomic positions of peaks detected
with parameter sets S1, S2, S3 and S4 (see Table 1 and main text) were analysed using the ‘peak-motif’ program with default
parameters. Complete results are presented in Supplementary data S1 (see supporting information). Motifs that exhibited the
highest percentages in initial lists of peaks are shown here (motif 1 for the S1 list, motif 9 for the S2 list, motif 5 for the S3 list
and motifs 7 and 1 for the S4 list); motifs that match the PDRE are indicated by ’PDRE’
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parameters in S4 therefore increased the sensitiv-
ity of the motif discovery (number the peaks with
PDRE motif is higher) but also strongly decreased
the associated specificity (the proportion of
peaks with PDRE motif is lower). Considering
these criteria, the S1 list was the most specific
list, with one-third of the peaks containing a
PDRE, but the S2 list presented a better com-
promise between sensitivity and specificity, as
it allowed identifying twice as many peaks con-
taining PDRE motifs. Importantly, the peaks
containing PDRE motifs were ranked as the best
positions in all lists (see supporting information,
Supplementary data S2), emphasizing the
relevance of the peak order provided by bPeaks.
Therefore, bPeaks was efficient in providing
high quality data that allowed the identification,
without any a priori, of the correct Pdr1p bind-
ing site. This is connected with the fact that it
efficiently ranked as best positions peaks with
Pdr1p DNA consensus sequences. We also ob-
served that the PDRE motifs were located very
close to the centres of the peaks, as illustrated
in Figure 5 (green boxes). This indicates that
bPeaks was very precise in the prediction of

the actual DNA binding site of Pdr1p from the
ChIPseq data.

Proportions of peaks in promoters

Using the ‘peak-to-gene’ function available in
bPeaks (see Methods), we identified peaks located
in the 800 nucleotides upstream of the ATG of a
protein-encoding gene. They were defined as
‘peaks in promoters’. In yeasts, most of the regula-
tory binding sites for specific TFs have been found
in these regions (Harbison et al., 2004). We can
therefore expect that the majority of the peaks,
which are meaningful in terms of transcriptional
regulation, stand in promoters. The proportion of
‘peaks in promoters’ in a list may thus reflect the
specificity and the relevance of a particular combi-
nation of parameters. This information is presented
in Table 1. We observed that the proportion of
‘peaks in promoters’ decreased together with the
stringency of the bPeaks parameters (Figure 3B).
It is very high in the S1 list (>70%) and the pro-
portion of peaks in promoters rapidly dropped to
45% in the longer lists (S2, S3 and S4). This

Figure 5. Illustration of peaks detected in promoter sequences of Pdr1p targets. Promoters of genes SNQ2, TPO1, PDR5 and
RPN4 are shown here. IP and control signals are shown in grey, gene locations in blue, and genomic positions (peaks) detected
with bPeaks are represented in red (parameter set S1), pink (parameter set S2), yellow (parameter set S3) and grey
(parameter set S4); PDRE motifs are shown in green. These images are screenshots of the IGV software
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parameter can also be used to assess the interest of
choosing one list or another for further analyses.

Validation of bPeaks results by comparison with
Pdr1p targets described in the literature

A last outcome expected fromChIPseq data is to iden-
tify target genes of the studied transcription factor. In
that respect, we searched for all documented DNA
binding evidences for Pdr1p in the YEASTRACT
database (Teixeira et al., 2014) and compared this list
with the lists of peaks found by bPeaks in the
promoters of protein-encoding genes (see supporting
information, Supplementary data S2). We observed
that the DNA binding evidences found in the literature
largely overlapped the PDRE-containing peaks that
we identified above. Hence, the proportion of Pdr1p
targets was 45% in the S1 list, 29% in the S2 list,
19% in the S3 list and 14% in the S4 list. As the
proportion of yeast promoters annotated in the
database as Pdr1p targets is only 6% (see supporting
information, Supplementary data S2), bPeaks ap-
peared to be very efficient in identifying, as ‘best’
peaks, promoter regions of genes that were already de-
scribed as Pdr1p targets. Moreover, as was observed
for PDRE-containing peaks, the validated targets of
Pdr1p were essentially found in the first positions
of lists retrieved by the bPeaks program (see
supporting information, Supplementary data S2).

Generalization to other datasets

With the case study of the Pdr1p transcription factor,
we presented a general protocol for applying bPeaks
to ChIPseq data that consists in: (a) testing the influ-
ence of bPeaks parameter values on detected peaks;
and (b) assessing the biological significance of the
retrieved lists of peaks using additional information
(e.g. detection of regulatory motifs, proportion of peaks
in promoters or a reference list of target genes described
in the literature). This protocol can be easily used for
other ChIPseq contexts, i.e. different transcription fac-
tors and different species. To demonstrate this point,
we used ChIPseq datasets obtained in the species C.
albicans and C. glabrata. All results are available in
Supplementary data S3 (see supporting information).

Sfl1p transcription factor in C. albicans

In Candida albicans, Sfl1p is a transcription factor
involved in morphogenesis and virulence. Its

transcriptional targets were identified recently using
ChIPseq experiments and it has been demonstrated
that Sfl1p exerts its regulatory activity by binding
two transcriptional co-factors, Ndt80p and Efg1p
(Znaidi et al., 2013). In their original publication,
the authors used the MACS program (Zhang et al.,
2008) to perform peak calling. To test the relevance
of the bPeaks approach, ChIPseq data on Sfl1p were
downloaded (see Methods) and used for peak
calling with bPeaks. As described for Pdr1p
datasets, we first evaluated the influence of parame-
ters using the 36 combinations of values (identical to
these used Pdr1p data), and seven different lists of
peaks were obtained (see supporting information,
Supplementary data S3). To assess the biological
relevance of the retrieved lists, we searched for
regulatory motifs using the ‘peak-motifs’ program
(Thomas-Chollier et al., 2012). For all lists of peaks,
we were able to detect motifs similar to the
consensus-binding sites of the Sfl1p co-factors
(Ndt80p and Efg1p; an illustration is shown
Figure 6A), as described in the original publication
(Znaidi et al., 2013).

CgAp1p transcription factor in Candida glabrata

CgAp1p is the orthologous TF of Yap1p, which
controls the transcriptional response to oxidative
stress in S. cerevisiae (Lucau-Danila et al., 2003;
Lelandais et al., 2008; Goudot et al., 2011). These
TFs have been shown to enter the nucleus and bind
their DNA consensus motifs, called Yap Response
Element (YRE), only in stress conditions. Compar-
ing the DNA binding pattern of CgAp1p TF in
stressful and normal growth conditions represents
a good opportunity to test the specificity of the
bPeaks program. ChIPseq experiments were there-
fore performed in oxidative stress and in optimal
growth conditions (see Methods). Each stress and
non-stress condition was independently compared
to the associated control samples (INPUT),
applying the bPeaks general protocol (parameter
evaluation followed by detections of regulatory
motifs). As expected, the 36 combinations of
parameters all retrieved numbers of detected peaks
much higher in stress condition than in the absence
of stress [see Figure 6B for S1 and S4 results, and
Supplementary data S3 (see supporting informa-
tion) for all other combinations]. Notably, only
five peaks were found in normal conditions with
the most stringent sets of S1 parameters
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(Figure 6B). Visual inspection of these peaks
suggested experimental bias associated to ChIPseq
experiments; this will be discussed elsewhere
(Merhej et al., manuscript in preparation). Also,
the YRE motif was found as the best motif from
all the lists of peaks defined by bPeaks in stress
conditions, whereas it was not found with the lists
of peaks obtained from the control experiment (see
supporting information, Supplementary data S3).
In conclusion, the Sfl1p and Cgap1p analyses

presented here confirmed that bPeaks is efficient
in sorting out biologically meaningful lists of
peaks from ChIPseq data conducted on different
types of TF, in different yeast species and with
different sequencing coverages.

Evaluation of bPeaks performances in the light of
other peak-calling methods

Numerous tools are available for peak-calling
analyses. To evaluate bPeaks performances, we
compared the results obtained by bPeaks with
those obtained with three popular peak-calling
programs – MACS (Zhang et al., 2008), SPP
(Kharchenko et al., 2008) and BayesPeak (Spyrou
et al., 2009; Cairns et al., 2011). Results obtained
in the yeasts S. cerevisiae, C. albicans and C.
glabrata using the Pdr1p, Sfl1p and CgAp1p
ChIPseq data are shown Table 2. We observed that
the three programs produced very different results
in terms of detected peak numbers and peak sizes.

Figure 6. Results of the bPeaks program analysing ChIPseq data in Candida albicans (Sfl1p transcription factor) and Candida
glabrata (Cgap1p transcription factor). An identical procedure to that presented in the main text for Pdr1p data was applied.
Parameter evaluation was first performed and lists of detected peaks were retrieved. Associated DNA sequences were
analysed for regulatory motif discovery; all the results are provided in Supplementary data S3 (see supporting information).
Illustrations of the bPeaks results obtained in C. albicans and C. glabrata are shown in (A) and (B), respectively
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Remarkably, bPeaks exhibited the smaller compu-
tational time (around 5min). This is an advantage
of its specific development to study small
genomes. Interestingly, we could observe that the
numbers of peaks found were, in many occur-
rences, in contradiction with what is known of
the biology of the system studied. For instance,
BayesPeak systematically detected a very high
number of peaks and SPP proposed similar num-
bers of peaks for CgAp1p with and without stress,
whereas this factor is known to be enriched in the
nucleus only in stress conditions. Also, no peaks

were found by SPP in the case of Sfl1p. This result
is in contradiction with what has been published on
these data (Znaidi et al., 2013).
Lists of peaks detected with MACS, SPP and

bPeaks in the Pdr1p dataset (S. cerevisiae) were next
retrieved for further comparisons. BayesPeak results
were not used because this program provides lists of
peaks sorted by genomic positions, and not by
confidence levels (as the MACS, SPP and bPeaks
programs do). Since the numbers of peaks were very
different from one method to another, we selected
for comparison the top 50 ‘best peaks’, i.e. peaks
with the highest confidence, retrieved by MACS,
SPP and bPeaks, respectively. We first searched
for peaks in promoters of well-characterized Pdr1p
target genes (see supporting information, list in
Supplementary data S4). We found nine peaks in
promoters of Pdr1p targets in the MACS list, 14
peaks in the SPP list and 12 peaks in the bPeaks list
(see supporting information, Supplementary data
S4, for all lists of peaks with Pdr1p target annota-
tions). We next analysed the ranks that exhibited
peaks in promoters of Pdr1p targets, in the top 50
‘best peaks’; the results are presented in Figure 7.
In terms of detection and ranking of Pdr1p targets,
the performances obtained by bPeaks were similar
to those of SPP or MACS. We finally compared
the sizes of the peaks predicted by the different
methods. Our rationale was that the smaller the peak
sizes are, the better the accuracy achieved for DNA
binding site predictions. The average size of peaks
is remarkably small for bPeaks (181 bp) compared
to MACS (2310 pb) and SPP (2878 bp) (Table 2).
Our bioinformatics tool is more precise than MACS
and SPP in localizing the actual binding site of the
transcription factor. This is well illustrated in Sup-
plementary data S5 (see supporting information).
Altogether, these results conform to the idea that
whereas bPeaks does not use a sophisticated statisti-
cal model, it is at least as efficient as existing tools in
proposing lists of peaks that are enriched in potential
targets, and is more precise in defining the peak loci.

Discussion

With the explosion of high-throughput sequencing
in general and ChIPseq in particular, dozens of tools
for peak calling were developed (for a detailed list,
see Bailey et al., 2013). In this context, the

Table 2. Summary table for peaks identified by different
peak calling methods

Peak calling
program

Computational
time

Number of
peaks

detected

Average
peak size

(nt)

Pdr1p – S. cerevisiae

MACS 20min 04 s 248 932
SPP 69min 46 s 67 2878
BayesPeak 28min 28 s 3500 183
bPeaks
(S2 parameters)

04min 07 s 122 181

Sfl1p – C. albicans

MACS 025min 00 s 170 2678
SPP 138min 55 s 0 0
BayesPeak 023min 47 s 338 207
bPeaks
(S2 parameters)

006min 48 s 35 278

CgAp1p – C. glabrata (+stress)

MACS 019min 30 s 615 1737
SPP 415min 17 s 3068 3765
BayesPeak 024min 51 s 1591 229
bPeaks
(S2 parameters)

005min 07 s 95 298

CgAp1p – C. glabrata (– stress)

MACS 017min 58 s 340 1149
SPP 364min 08 s 2733 2644
BayesPeak 024min 03 s 2560 210
bPeaks
(S2 parameters)

005min 02 s 25 252

Default parameter values were used for MACS, SPP and BayesPeak and
parameter set S2 was used for bPeaks (T1=6, T2= 2, T3=2 and
T4= 0.9; see Table 1); the Pdr1p, CgAp1p and Sfl1p datasets are detailed
in the main text. Number of detected peaks and average peak size are
indicated for each method applied to each dataset. Computational times
were obtained on an HP Z820 Workstation [Intel Xeon E5-2609 2.4
Ghz CPU and 16GB DDR3-1600 (8× 2GB) RAM].
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originality of our bioinformatics tool rely on its ded-
icated design to study ChIPseq data related to spe-
cific transcription factors in small eukaryotic
genomes, such as yeasts. In Table 2 and Supple-
mentary data S4 and S5 (see supporting informa-
tion) we compared bPeaks performances with
other commonly used peak-calling algorithms
(MACS, SPP, BayesPeak). As a result, bPeaks
provided lists of peaks which were better in terms
of biological relevance (i.e. better enrichment of
potential targets and more precise definition of
the transcription factor binding sites). Importantly,
this does not mean that bPeaks is intrinsically
better than the other methods. This is due to the fact
that bPeaks was optimized for yeast ChIPseq data,
when the other methods have been designed to have
a wider range of applications. Accurate optimization
of parameters would certainly lead to increasing the
performance of these programs. Still, this compari-
son demonstrates that we succeeded in making an
appropriate and efficient tool to study ChIPseq data

in yeasts. We believe that this specialization of
bPeaks has three main advantages compared to
more general methods.
First, bPeaks uses simple parameters to identify

peaks, which actually correspond to the parameters
that a user is considering when manually checking
peaks on a genome browser. Because of this
simplicity, and because it is meant to be applied to
small genomes, bPeaks can be systematically used
to explore its parameter space in a very reasonable
computing time. Running the 36 different combina-
tions of parameters on a yeast genome takes 1 h on a
standard working desk station. This approach has
the advantage of helping the user to get a compre-
hensive view of the influence of the different
parameter changes on the final output of the
program. There is a very direct relationship between
the specified parameter values and the basic features
of the detected peaks. This allows precise control of
the balance between stringency and sensitivity in
peak-calling analyses.
Second, while most of the existing methods use

density estimators in fixed windows to limit the
calculation time required when analysing large
genomes, bPeaks analyses the ChIPseq signal at
the nucleotide level, which provides a higher
spatial resolution of the detected peaks. This is well
illustrated by the sharpness of the peaks found by
bPeaks, which were perfectly centred on the putative
consensus-binding site of the studied TF (Figure 5
and Supplementary data S5, see supporting informa-
tion). Together with the relevance of the parameters
used to define peaks, this characteristic may explain
why bPeaks was so efficient in predicting the
consensus sequence of TF binding sites on the three
examples we studied.
Third, bPeaks output files were designed to be

used to estimate the relevance of the detected
peaks, using complementary tools to, for instance:
(a) visualize results in a genome browser; (b)
search for regulatory motifs; or (c) automatically
assign peaks to particular annotated regions in a
genome. In the specific case of yeast transcription
factors, the number of peaks that contain a pre-
dicted TF binding site, together with the proportion
of peaks in promoter regions, appeared to be very
biologically meaningful information. Still it is
important to consider that ChIPseq technique
generates numerous false positives that are due to se-
quencing biases, libraries complexity, the chromatin
state of highly expressed genes, etc. (for a detailed

Figure 7. Positions of Pdr1p target genes in the list of 50
best peaks detected with the bPeaks, MACS and SPP
programs. A complete list of Pdr1p targets, together with
detailed annotation of peaks, are available in Supplementary
data S4 (see supporting information)
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description, see Park et al., 2013). This could explain
why detected peaks are not systematically associated
to regulatory motifs and why peaks can be detected in
conditions where a TF is not expected to be
functional. Of course, the intrinsic complexity of
transcriptional regulations that occur in a cell is
another explanation, and distinguishing ‘real’ peaks
(interaction between TF and DNA) from ‘artefact’
peaks (other peaks) is the main challenge faced by
peak-calling programs. In this context, the use of a
control sample, as in bPeaks, is a prerequisite to
improving peak-calling results. Also, we believe that
it is important not to trust only final statistical param-
eters (e.g. p values). In this article we used an original
strategy in which different parameter values for peak
detection were systematically tested and the lists of
peaks obtained were used to predict the DNA-
binding motif(s) of the TF and calculate the propor-
tion of peaks in promoters. These are two other types
of reference information, which in turn were used to
address the sensitivity and specificity of the initial
parameter choices. The originality of the bPeaks
program is therefore to give the opportunity to the
user to define, based on the user’s own criteria, the list
of peaks that present a good compromise between
sensitivity and specificity.
We used bPeaks to analyse three different

transcription factors, from three different protein
families with different DNA binding properties,
in three different yeast species. In all three cases,
bPeaks provided lists of peaks that allowed accu-
rate predictions of the DNA consensus sequences.
Remarkably, the peaks containing these motifs
were ranked among the top of the best peaks in
the lists (see supporting information, Supplemen-
tary data S2 and S3). Notably, when we applied
bPeaks to the CgAp1p ChIPseq conducted in the
absence of stress, a condition in which no binding
events was expected, we obtained very short lists
of peaks (five at minimum, 30 with the less strin-
gent combinations of parameters). These results
fully validate the efficiency and relevance of the
bPeaks program in identifying TF binding sites
from ChIPseq experiments conducted in simple
eukaryotes with a genome size of ca. 10–20Mb.
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Supplementary data S1. All motifs detected in
S1, S2, S3 and S4 lists of peaks. The ‘peak-motif’
tool was used, with default parameters
Supplementary data S2. Detailed lists of peaks
associated with parameters in S1, S2, S3 and S4,
located in the promoters of genes (800 bp). The
names of the genes are indicated, together with in-
formation related to the presence of a PDRE motif
in promoters and DNA-binding evidence in the
YEASTRACT database. All Pdr1p targets stored
in YEASTRACT are also noted
Supplementary data S3. Detailed results of
bPeaks analyses in Candida yeast species
Supplementary data S4. Peak-calling results ob-
tained with MACS, SPP, BayesPeak and bPeaks
programs on Pdr1p data
Supplementary data S5. Illustrations of peaks de-
tected in promoter sequences of Pdr1p targets.
bPeaks results are shown in red, MACS in orange,
SPP in green and BayesPeak in purple
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